
34

Addison-Wesley.

Wolpert, D. (1994b). On the Bayesian “Occam factors” argument for Occam’s razor. To appear in
Computational Learning Theory and Natural Learning Systems: Volume III Natural Learning Sys-
tems, S. Hanson et al. (Ed.’s). MIT Press.

Wolpert, D. and Macready, W. (1994). No Free Lunch Theorems for Search. SFI TR 95-02-010.
Submitted.

33

Kearns, M. J., et al. ‘Towards efficient agnostic learning, inProceedings of the 5th annual work-
shop on Computational Learning Theory, ACM Press, NY, NY, 1992.

Knill, M, Grossman, T., and Wolpert, D. (1994). Off-Training-Set Error for the Gibbs and the
Bayes Optimal Generalizers. Submitted.

Mitchell T., Blum, A. (1994).Course notes for Machine Learning, CMU.

Murphy, P., Pazzani, M. (1994). Exploring the decision forest: an empirical investigation of Oc-
cam’s razor in decision tree induction.Journal of Artificial Intelligence Research, 1, 257-275.

Natarajan, B. (1991).Machine Learning: A theoretical approach. Morgan Kauffman, San Mateo,
CA.

Perrone, M. (1993). Improving regression estimation: averaging methods for variance reduction
with extensions to general convex measure optimization. Ph.D. thesis, Brown Univ. Physics Dept.

Plutowski, M., et al. (1994). Cross-validation estimates integrated mean squared error. InAdvances
in neural information processing systems 6, Cowan et al. (Ed.’s), Morgan Kauffman, CA.

Schaffer, C., (1993). Overfitting avoidance as bias.Machine Learning, 10, 153-178.

Schaffer, C. (1994). A conservation law for generalization performance. In Cohen and Hirsh
(Ed.’s),Machine Learning: Proceedings of the Eleventh International Conference. Morgan Kauff-
man, San Francisco.

Schapire, R. (1990). The strength of weak learnability.Machine Learning. 5, 197-227.

Vapnik, V. (1982). Estimation of dependences based on empirical data. Springer-Verlag.

Vapnik, V., and Bottou, L. (1993). Local algorithms for pattern recognition and dependencies es-
timation.Neural Computation, 5, 893-909.

Waller, W., Jain, A. (1978). On the monotonicity of the performance of Bayesian classifiers.IEEE
Transactions on Information Theory, IT-24, 392-394.

Weiss, S.M., and Kulikowski, C. A. (1991).Computer systems that learn. Morgan Kauffman.

Wolpert, D. (1992). On the connection between in-sample testing and generalization error.Com-
plex Systems, 6, 47-94.

Wolpert, D. (1993). On overfitting avoidance as bias. SFI TR 93-03-016.

Wolpert, D. (1994a). The relationship between PAC, the Statistical Physics framework, the Baye-
sian framework, and the VC framework. InThe Mathematics of Generalization. D. Wolpert (Ed.).

32

P(c | yH, q, d) =ΣyF
δ(c, L(yH, yF))

∫ df(x ∉ dX) f(q, yF) ∫ df(x ∈ dX) P(d | f) / P(d).

Up to overall proportionality constants, we can now replace both integrals with∫ df. By the same rea-

soning using in the proof of theorem (1), the first integral is a constant. If we reintroduce the constant P(f)

into the remaining integral, we get∫ df P(d | f) P(f) / P(d) = 1. Therefore, P(c | yH, q, d) =ΣyF
δ(c, L(yH, yF)).

(Note that for homogenous L(., .), this is independent of yH.) As needed, this is independent of q and d.

QED.

References

Anthony M. and Biggs N. (1992).Computational Learning Theory. Cambridge University Press.

Berger, J. (1985).Statistical decision theory and Bayesian analysis. Springer-Verlag.

Bernardo, J. Smith, A. (1994). Bayesian Theory. Wiley and Sons, NY.

Berger, J., and Jeffreys, W. (1992). Ockham’s razor and Bayesian analysis.American Scientist, 80,
64-72.

Blumer, A., et alia (1987). Occam’s razor.Information Processing Letters, 24, 377-380.

Blumer, A., et alia (1989). Learnability and Vapnik-Chervonenkis dimension.Journal of the ACM,
36, 929-965.

Bridle, J. (1989). Probabilistic interpretation of feedforward classification network outputs, with
relationships to statistical pattern recognition. In F. Fougelman-Soulie and J. Herault (Eds.),Neu-
ro-computing: Algorithms, architectures, and applications. Springer-Verlag.

Dietterich, T. (1990). Machine Learning. Annu. Rev. Comput. Sci.,4, 255-306.

Drucker, H. et al. (1993). Improving performance in neural networks using a boosting algorithm.
In Neural Information Processing Systems 5, S. Hanson et al. (Eds). Morgan-Kauffman.

Duda, R., and Hart, P. (1973).Pattern classification and scene analysis. Wiley and Sons.

Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers.IEEE Transactions on
Information Theory, IT-14, 55-63.

31

similarly for smax(Ξ, φ). Then what we need is for there to be an h, h* , such that

{ ε - smax(dX, φ)} / π(X - dX) < E(C | φ, h* , d) ≤ {ε - smin(dX, φ)} / π(X - dX).

In particular, for zero-one loss, and single-valued f, smin(dX, φ) = 0, and smax(dX, φ) = π(dX). So we

need an h* such {ε - π(dX)} / π(X - dX) < E(C |φ, h* , d) ≤ ε / π(X - dX). For anyε < 1, there is such an

h* . This establishes theorem (14).

APPENDIX C. Proof of theorem (15)

We need to prove that for a vertical likelihood and OTS error, for uniform P(f), all learning algorithms

with the same P(yH | m) have the same P(c | m). First write P(c | m) =ΣyH
 P(c | yH, m) P(yH | m) (where

from now on the uniformity of P(f) is implicit). If P(c | yH, m) is independent of the learning algorithm, the

proof will be complete. So expand P(c | yH, m) = Σq,d P(q, d | yH) P(c | yH, q, d). I will show that

P(c | yH, q, d) is a fixed function of c and yH that is independent of q and d. This in turn means that

P(c | yH, m) is the same fixed function of c and yH, which is exactly the result we need.

Write P(c | yH, q, d) =∫ df ΣyF
δ(c, L(yH, yF)) f(q, yF) P(f | yH, q, d). Next use Bayes’ rule to rewrite

P(f | yH, q, d) as P(yH | f, q, d) P(f | q, d) / P(yH | q, d).

Now write P(yH | q, d) =ΣH h(q, yH) P(h | d). But P(yH | f, q, d) is given by the same sum. Therefore

P(f | yH, q, d) = P(f | q, d). Using Bayes’ theorem again, P(f | q, d) = P(q | d, f) P(d, f) / [P(q | d) P(d)] =

P(d | f) P(f) / P(d)∝ P(d | f) / P(d) (since we have a uniform P(f)). So combining everything, up to an overall

proportionality constant,

P(c | yH, q, d) =ΣyF
δ(c, L(yH, yF)) ∫ df f(q, yF) P(d | f) / P(d).

Now recall that P(c | yH, q, d) is occurring after being multiplied P(q, d | yH). For OTS error, P(q, d | yH) =

0 unless q∈ X - dX. Therefore in evaluating P(c | yH, q, d) we can assume that q∈ X - dX. Accordingly,

the term f(q, yF) only depends on the values of f(x∉ dX). Since we have a vertical likelihood, the P(d | f)

term only depends on f(x∈ dX). Accordingly, we can write

30

value of S(h1, φ, dX) as s1, and a value of S(h2, φ, dX) as s2. By (C.1), the set of h1 under consideration are

those for whichε ≥ s1, and such that for OTS error C,

C.2) E(C | h1, φ, d) ≤ { ε - s1} / π(X - dX),

and similarly for E(C | h2, φ, d). (The expression “π(Ξ)” is shorthand forΣx∈Ξ π(x).)

We are interested inΣH1,H2∈Hφ(ε) E(C | h1, h2, φ, d, i), where ‘i’ is either A or B. As usual, expand the

sum into an outer and inner sum, getting

ΣH1(x∈dX),H2(x∈dX) ΣH1(x∉dX),H2(x∉dX) E(C | h1, h2, φ, d, i),

where the restriction that both h1 and h2 lie in Hφ(ε) is implicit.

Consider the inner sum, for any particular set of values of h1(x ∈ dX) and h2(x ∈ dX). Without loss of

generality, say that for the d at hand and the values of h1(x ∈ dX) and h2(x ∈ dX), strategy A picks h1. This

means that s1 ≤ s2.

Examine the case where s1 is strictly less than s2. Using (C.2), the inner sum over h1(x ∉ dX) is over all

h(x ∉dX) such that E(C |φ, h, d)≤ { ε - s1} / π(X - dX), and the inner sum over h2(x ∉ dX) is over all

h2(x ∉dX) such that E(C |φ, h, d)≤ { ε - s2} / π(X - dX).

Since s1 < s2, this means that the h’s going into the sum over h1(x ∉ dX) are a proper superset of the h’s

going into the sum over h2(x ∉ dX). In addition, for all the h’s that are in the h1 sum but not in the h2,

E(C |φ, h, d)≥ 0. (In fact, those h’s obey {ε - s2} / π(X - dX) < E(C | φ, h, d) ≤ { ε - s1} / π(X - dX).)

Therefore so long as the set H*(s1, s2) of h’s in the h1 sum but not in the h2 sum is not empty, the h1 sum is

larger than the h2 sum.

This means that for all cases where s1 is strictly less than s2 and H*(s1, s2) is non-empty,

ΣH1(x∉dX),H2(x∉∈dX) E(C | h1, h2, φ, d, i) is larger for algorithm A than for algorithm B. If s1 = s2, then

ΣH1(x∉dX),H2(x∉∈dX) E(C | h1, h2, φ, d, i) is the same for both algorithms. So if there are any h1 and h2 in

the sum such that the associated H*(s1, s2) is non-empty, it follows thatΣH1,H2∈HF(ε) E(C | h1, h2, φ, d, i) is

larger for algorithm A than for algorithm B. If there are no such h1 and h2, ΣH1,H2∈HF(ε) E(C | h1, h2, φ, d,

i) is the same for both algorithms. This establishes theorem (13).

To understand when there are any h1 and h2 such that the associated H*(s1, s2) is non-empty (so that we

get a strict inequality in theorem (13)), make the definition smin(Ξ, φ) ≡ Σq∈Ξ π(q) minyH
(L(yH, φ(q))), and

29

theorem (1) of paper one. More formally, follow the reasoning presented after lemma (1), only applying it

to our distribution rather than to∫ df P(c | f, d). The result is lemma (3) (rather than theorem (1)). QED.

Proof of theorem (11): Expand our sum as

Σh1(x∈dX),H2(x∈dX) Σh1(x∉dX),H2(x∉dX)P(c | f, h1, h2, d, i).

Consider any set of values of h1(x∈dX), h2(x∈dX) such that the strategy at hand picks h1. For such a set of

values, our inner sum becomes (up to an overall proportionality constant determined by m')

Σh1(x∉dX)P(c | f, h1, d), with obvious notation. By lemma (3), this is simply some function λ(c), independent

of f and d. The same is true for those sets of values of h1(x∈dX),h2(x∈dX) such that the strategy at hand

picks h2. Therefore, up to overall constants,Σh1,h2
 P(ci | f, h1, h2, d) is justλ(c). This is true regardless of

which strategy we use. We have now established the following.

Proof of theorem (16): For a uniform P(f), P(yH | m)∝ Σq,d ∫ df dh h(q, yH) P(h | d) P(q | d) P(d | f). The

integral over f only works on the P(d | f). For the likelihood at hand, it is some function func(m, m'), inde-

pendent of d. Therefore we have

P(yH | m)∝ Σq,d ∫ dh func(m, m') h(q, yH) P(h | d) P(q | dX)

 =Σq,dX
∫ dh func(m, m') h(q, yH) P(q | dX) ΣdY

 P(h | dX, dY).

By hypothesis, the sum over dY is the same for our two algorithms. QED.

APPENDIX B. PROOF OF THEOREMS (13) AND (14)

Let Hφ(ε) indicate the set of h’s such that E(CIID | h, φ) ≤ ε. This appendix analyzes the sign of

ΣH1,H2∈Hφ(ε) [E(C | h1, h2, φ, d, A) - E(C | h1, h2, φ, d, B)] for OTS error. In particular, it shows that this

quantity is necessarily positive for zero-one loss for anyε < 1.

We can express Hφ(ε) as the set of h’s such that

C.1)Σq∈dX
L(h(q), φ(q)) π(q) +Σq∉dX

L(h(q), φ(q)) π(q) ≤ ε.

It is useful to introduce the following notation. Define S(h,φ, Ξ) ≡ Σq∈Ξ L(h(q), φ(q)) π(q). Indicate a

28

break the integral over f into two integrals, one over the values of f(x∈ dX), and one over the values of

f(x ∉ dX). The integral over f(x∉ dX) transforms the f(q, yF) term into a constant, independent of q and yF.

We can then bring back in the P(f), and replace the integral over f(x∈ dX) with an integral over all f (up to

overall proportionality constants). So up to proportionality constants, we’re left with

P(yH | yF, m) =Σd,q ∫ dh h(q, yH) P(h | d) P(q | d) P(d) / P(yF | m).

Now write P(yF | m) =Σd,q ∫ df P(yF | f, d, q) P(f, d, q | m)∝ Σd,q ∫ df f(q, yF) P(q | d) P(d | f). As before,

the P(q | d) allows us to break the integral over all f into two integrals, giving us some overall constant. So

P(yH | yF, m)∝ Σd,q ∫ dh h(q, yH) P(h | d) P(q | d) P(d). However this is exactly the expression we get if we

write out P(yH | m). QED.

6. As an aside, consider the case where Y = {1, 2, ..., r} and r is odd. Now E((yH)2 | m) -

2 E(yH | m) E(yF | m) = -[E(yF | m)]2 + E((yH - E(yF | m))2 | m). So guessing such that yH always equals

E(yF | m) gives best behavior. In particular, for the likelihood of equation (1.1), E(yF | m) =Σr
i=1 i / r =

(r + 1) / 2, so best behavior comes from guessing halfway between the lower and upper limits of Y.

Similarly, E((yH)2 | m) = Var(yH| m) + (E(yH | m))2 (with the implicit notation that “Var(a | b)” is the

variance of a, for probabilities conditioned on b). So for two learning algorithms A and B with the same

E(yH | m), guessing the algorithm with the smaller variance is preferable. These results justify the claims

made at the beginning of this section, for the case of a uniform prior.

APPENDIX A. MISCELANEOUS PROOFS

Proof of lemma (3): Expand the sum in question as

Σh(x∉dX),q,yH,yF
δ(c, L(yH, yF)) P(q | d) f(q, yF) h(q).

Since P(q | d) = 0 for q∈ dX, this sum is independent of the values of h(x∈ dX). Accordingly, up to an

overall constant, we can rewrite it as

Σh,q,yH,yF
δ(c, L(yH, yF)) P(q | d) f(q, yF) h(q).

We can use the reasoning of the NFL theorems to calculate this. Intuitively, all we need do is note by

lemma (1) (see paper one) that our sum equals∫ df P(c | f, d) if one interchanges f and h, and then invoke

27

Indeed, by the argument just below lemma (1) in paper one, we know that for the random learning algorithm

E(C | f, m) =Σc Λ(c) c / r for all f, so that maxf E(C | f, m) = minf E(C | f, m) for that algorithm. Using the

NFL theorems, this means that the random learning algorithm is minimax superior to all other learning al-

gorithms.

2. It’s important to keep mind though that even if head-to-head minimax behavior does end up playinga

priori favorites between algorithms, it’s not clear why one should care about such behavior rather than sim-

ple expected cost (which by the NFL theorems plays no such favorites). One intriguing possible answer to

this question is that in choosing between species A and species B (and their associated organic learning al-

gorithms), natural selection may use head-to-head minimax behavior. The idea is that for those targets f for

which A’s behavior is just slightly preferred over B’s, equilibrium has a slightly smaller population for spe-

cies A than for species B. But if there is any non-linearity in the system, then for any f’s for which A’s be-

havior is far worse than B’s, A goes extinct. Therefore if over time the environment presents A and B with

a series of f’s, the surviving species will be the one with preferable head-to-head minimax behavior.

3. In terms of appendix B, we still get s1 < s2. In appendix B this meant that the upper limit on h2’s error

over X - dX was less than the upper limit on h1’s error, while they shared lower limits. Here it instead means

that the lower limit on h2’s error over X - dX is lower than the lower limit on h1’s error, while they share the

same upper limit.

4. Phrased differently, for a quadratic loss function, given a series of experiments and a set of deterministic

learning algorithms Gi, it is always preferable to use the average generalizer G'≡ Σi Gi / Σi 1 for all such

experiments rather than to randomly choose a new member of the Gi to use for each experiment. Intuitively,

this is because such an average reduces variance without changing bias. (See [Perrrone 1993] for a discus-

sion of what is essentially the same phenomenon, in a neural net context.) Or to put it another way, no matter

what value a real-number “truth” z has, if one has two real numbersα andβ, then it is always true that

(z - [α + β] / 2)2 ≤ (z - α)2 / 2 + (z -β)2 / 2. Note though that this effect in no way implies that using G'

for all the experiments is better than using any single particular G∈ {G i} for all the experiments.

5. To see this, write P(yH | yF, m) =Σd,q ∫ dfdh h(q, yH) P(h | d) P(d, q, f | yF, m). Use Bayes’ theorem to

write P(d, q, f | yF, m) = P(yF | f, d, q) P(f, d, q | m) / P(yF | m) = f(q, yF) P(q | d) P(d | f) P(f) / P(yF | m).

Combining, P(yH | yF, m) =Σd,q ∫ dfdh h(q, yH) P(h | d) f(q, yF) P(q | d) P(d | f) P(f) / P(yF | m).

In the usual way, we take P(f) to be a constant, have the P(q | d) restrict q to lie outside of dX, and then

26

tioned as “beyond the scope of this paper” in section 4 of paper one.

12) Investigate what priors P(f) have E(COTS | no punt, m) ≤ E(COTS | punt, m).

13) Investigate if and how results change if one conditions on a value of m' rather than m.

14) Carry through the analysis for error C' rather than C.

15) Investigate what set of conditions give NFL results for any algorithm in an equivalence class of algo-

rithms that are scrambled versions of one another (as opposed to NFL results for all algorithms). As an ex-

ample, it seems plausible that any P(φ) for which eachφ(x) is determined by IID sampling some distribution

R(y) - i.e., any P(φ) = Πx R(φ(x)) - results in NFL-style equivalence between all algorithms in any scram-

ble-based equivalence class of algorithms. (The restricting to the equivalence class is necessary since an al-

gorithm with a disposition to guess argmax(R(y)) will likely outperform one that tries to guess

argmin(R(y)).) Similarly, it seems plausible that if one keeps f fixed but averages over all bijections of X to

itself - i.e., if one averages over all encodings of the inputs - then all algorithms in such an equivalence

class have the same generalization performance. (This latter result would constitute a sort of NFL-for-fea-

ture-representations result.)

Acknowledgments: I would like to thank Cullen Schaffer, Wray Buntine, Manny Knill, Tal Grossman, Bob

Holte, Tom Dietterich, Mark Plutowski, Karl Pfleger, Joerg Lemm, Bill Macready and Jeff Jackson for in-

teresting discussions. This work was supported in part by the Santa Fe Institute and by TXN Inc.

FOOTNOTES

1. To simply say that A is minimax superior to B without the “head-to-head” modifier would imply instead

something like maxf E(C | f, m, A)≤ maxf E(C | f, m, B). Such minimax superiority is of little interest.

25

2) Investigate distributions of the form P(c1, c2 | ...), where ci is the error for algorithm i, when there are

more than two possible values of the loss function.

3) Investigate the validity of the potential “head-to-head minimax” justification for cross-validation, both

for the scenario discussed in this paper, and for non-homogenous loss functions and/or empirical-loss-con-

ditioned distributions, and/or averaging over hypotheses rather than targets.

4) Investigate whether there are scenarios in which one generalizer is head-to-head minimax-superior to the

majority of other generalizers. Investigate whether there are “head-to-head minimax superior cycles”, in

which A is superior to B is ... superior to A, and if so characterize those cycles.

5) Investigate for what distributions over hypotheses h do sums over h’s with the target f fixed result in the

majority algorithm beating the anti-majority algorithm.

6) Investigate sums over h’s with f fixed when f and/or h is not single-valued (note for example that if

f(q, y) = 1 / r∀ q and y, then all h’s have the same value ofΣyH,yF
 f(q, yF) h(q, yH) L(yH, yF) if L(., .) is

homogenous);

7) Investigate sums over h’s where f too is allowed to vary.

8) Investigate under what circumstances E(CIID | m) < E(COTS | m).

9) Find the set of P(f)’s such that all learning algorithms are equivalent, as determined by P(c | m). There

are other P(f)’s besides the uniform one for which this is so. An example given in the text is that for fixed

homogenous noise, the distribution that is uniform overφ’s results in NFL. Find the distributions G(α) over

priorsα such that all algorithms have the same average according to G(α) of P(c |α, m). For any pair of

algorithms, characterize the distributions G(α) for which the algorithms have the same average according

to G(α) of P(c |α, m).

10) Find the set of P(f)’s for which two particular algorithms are equivalent according to P(c | m). Find the

distributions L(f) such that two particular algorithms have the same average (according to L(f)) of P(c | f m).

11) Investigate the empirical-loss-conditioned distributions and punt-signal-conditioned distributions men-

24

On the other hand, there may be some assurances associated with non-averaging criteria, like head-to-head

minimax criteria. In addition, for certain other noise processes and/or certain loss functions onecan, a pri-

ori, say that one algorithm is superior to another, even in terms of averages.

More generally, for all its reasonableness when stated in the abstract, the full implications of the no-

assurances concept for applied supervised learning can be surprising. For example, it implies that there are

“as many” targets (or priors over targets) in which any algorithm performsworse than random as there are

for which it performs better than random (whether one conditions on the training set, on the training set size,

on the target, or what have you). In particular it implies that cross-validation fails as readily as it succeeds,

boosting makes things worse as readily as better, active learning and/or algorithms that can choose not to

make a guess fail as readily as they succeed, etc. All such implications should be kept in mind when encoun-

tering quotes like those at the beginning of the introduction of paper one, which taken at face value imply

that, even without making any assumptions about the target, one can have assurances that one’s learning

algorithm generalizes well.

In addition to these kinds of issues, in which the generalizer is fixed and one is varying the target, this

second paper also discusses scenarios where the generalizer can vary but the target is fixed. For example,

this second paper uses such analysis to show that if one averages over generalizers cross-validation is no

better than “anti” cross-validation,regardless of the target. In this sense, cross-validation cannot be justified

as a Bayesian procedure - no prior over targets justifies its use for all generalizers.

There are many avenues for future research on the topic of OTS error. Restrictions like homogenous

noise, vertical likelihoods, fixed (as opposed to random variable) sampling distributions etc., are all imposed

to “mod out” certain “biasing” effects in the mathematics. Future work investigates the ramifications of re-

laxing these conditions, to precisely quantify the associated effects.

As an example, local noise in the observedX values will have the effect of “smoothing” or “smearing”

the target. With such noise, the likelihood is no longer vertical, and information from the training examples

does,a priori, leak into those off-training set x that lie near dX. So one does not get the NFL theorems in

general when there is such noise. However one can imagine restricting attention to those learning algorithms

that “respect” the degree of smoothness that noise inX imposes. Presumably NFL-like results hold among

those algorithms, but none of this has been worked out in any detail.

 Some other avenues of future research involving OTS error are mentioned in [Knill et al. 1994]. How-

ever even if one restricts attention to the limited NFL aspect of OTS error, and even for the restrictions im-

posed in this pair of papers (e.g., vertical likelihood), there are still many issues to be explored. Some of

them are:

1) Characterize when cross-validation beats anti-cross-validation for non-homogenous loss functions.

23

n / 2}, for cross-validation, there is a 2/3 chance of choosing h1 (cross-validation will choose h1 if dY = 2

or 3, for such a dX). Similarly, for anti-cross-validation, there is a 2/3 chance of choosing h2. Now since q

must lie outside of dX, for such a dX, E((yH - 2)2 | m) is smaller if yH is given by h2 than if it is given by h1.

So anti-cross-validation does better if dX ∈{1, 2, ..., n / 2}. For analogous reasons, anti-cross-validation

also does better if dX ∈ {1 + n/2, ..., n}. So anti-cross-validation wins regardless of dX. QED.

Example 8: As an example of where cross-validation beats anti-cross-validation, consider the same scenario

as in the preceding example, only with different h1 and h2. Have h1 = 2 for all x, and h2 = 1 for all x. Cross-

validation is more likely to guess h1, and anti-cross-validation is more likely to guess h2, regardless of dX.

However h1 has a better E((yH - E(yF | m))2 | m) than does h2, again, for all dX. QED.

Note the important feature of the preceding two examples that whether cross-validation works (in com-

parison to anti-cross-validation) depends crucially on what learning algorithms you’re using it to choose

among. This is another illustration of the fact that assuming that cross-validation works is not simply making

an assumption concerning the target, but rather making an assumption about the relationship between the

target and the learning algorithms at hand.

Intuitively, if one uniformly averages over all h1 and h2, there is no statistical correlation between the

training set and the cost, regardless of whether one uses algorithm A or algorithm B. When the loss function

is homogenous, this lack of correlation results in the NFL theorems. When the loss function isn’t homoge-

nous, it instead gives the results of this section.

5. CONCLUSIONS AND FUTURE WORK

These two papers investigate some of the behavior of OTS (off-training set) error. In particular, they

formalize and investigate the concept that “if you make no assumptions concerning the target, then you have

no assurances about how well you generalize”.

As stated in this general manner, this no-assurances concept is rather intuitive and many researchers

would agree with it readily. However the details of what “no assurances” means are not so obvious. For ex-

ample, for the conventional loss function, noise process etc. studied in computational learning theory, there

are indeed no generalization assurances associated with averages. (As a result, if we know that (for example)

averaged over some set of targets, F, the generalizer CART is superior to some canonical neural net scheme,

then we also know that averaged over targets not contained in F, the neural net scheme is superior to CART.)

22

iii) Implications of the equivalence of any learning algorithm with its scrambled version

The results of the preceding subsection tell us that there is noa priori reason to believe that there is any

value in a particular learning algorithm’s relationship between training sets d and resulting hypotheses h.

All that matters about the algorithm is how prone it is to guess certain yH’s, not the conditions determining

when it makes those guesses.

However these results are not as strong as the NFL theorems. As an example, these results do tell us that

cross-validation (used to choose among a pre-fixed set of learning algorithms) and its scrambled version al-

ways gives the same uniform f-average of P(c | f, m) (if one has OTS error, etc.). So in that sense there is no

a priori justification for the d-dependence of cross-validation, even for non-homogenous loss functions.

However for non-homogenous loss functions we cannot automatically equate cross-validation with anti-

cross-validation, like we could for homogenous loss functions. This is because the two techniques can have

different P(yH | m). In fact, there are some scenarios in which cross-validation has a better uniform f-average

of P(c | f, m), and some in which anti-cross-validation wins instead. Not only can’t one equate the tech-

niques, one can’t even say that the relative superiority of the techniques is always the same.

Example 7: As an example of where anti-cross-validation has better uniform f-average of its expected cost

than does cross-validation, let both techniques be used to choose between the pair of learning algorithms A

and B. Let A be the algorithm “always guess h1 regardless of the data” and B be the algorithm “always guess

h2 regardless of the data”. Let the training set consist of a single element, and let the “validation set” part of

the training set be that single element. So cross-validation will guess whichever of h1 and h2 is a better fit

to the training set, and anti-cross-validation will guess whichever is a worse fit to the training set.

Let Y = {1, 2, 3}, and X = {1, 2, ..., n} where n is even. Let h1(x) = 2 for x∈ {1, 2, ..., n / 2}, and let it

equal 1 for the remaining x. Conversely, h2(x) = 1 for x∈ {1, 2, ..., n / 2}, and 2 for the remaining x. Assume

we are using the quadratic loss function to measure C, and that both cross-validation and anti-cross-valida-

tion use the quadratic loss function to choose between h1 and h2. Assume the likelihood of equation (1.1)

and a uniform sampling distribution. Use a uniform P(f).

As shown in example (6), for this scenario, E(C | m) = E((yH - E(yF | m))2 | m). For our scenario, for a

uniform P(f), E(yF | m) = 2. So in comparing the uniform f-average of expected cost for cross-validation

with that for anti-cross-validation, it suffices to compare the values of E((yH - 2)2 | m) for the two tech-

niques.

Now by symmetry, whatever dX is, dY is equally likely to be 1, 2, or 3. Therefore if dX ∈{1, 2, ...,

21

Σf P(c | f, m), where the proportionality constant is independent of the learning algorithm. This establishes

the following corollary of theorem (15).

Corollary 5 Consider two learning algorithms that would have the same P(yH | m) if P(f) were uniform.

For a vertical likelihood and OTS error, the uniform average over f of P(c | f, m) is the same for those two

algorithms.

Now make the following definition.

Definition 1 The learning algorithm B is a “scrambled” version of the learning algorithm A if and only if

for all dX, ΣdY
 P(h | dX, dY, B) = ΣdY

 P(h | dX, dY, A). (The sums are implicitly restricted to dY’s with the

same number of elements as dX.)

Intuitively, if B is a scrambled version of A, then B is identical to A except that A’s correlation between

its guess h and the (output components of the) data has been scrambled.

As an example, view (a deterministic) algorithm A as a big table of h values, indexed by training sets

d. Then a scrambled version of A is given by the same table where the entries within each block correspond-

ing to a particular dX have been permuted.

Note that if for certain training sets A creates h’s with low training set error, then in general a scrambled

version of A will have much higher error on those training sets. Note also that scrambling doesnot involve

randomizing the h’s the algorithm can guess. It doesn’t touch the set of h’s. Rather scrambling involves ran-

domizing the rule for which h is associated with which d.

The following result in proven in appendix A:

Theorem 16 Assume the (vertical) likelihood of equation (1.1). Then if learning algorithm B is a scrambled

version of A, it follows that for uniform P(f), P(yH | B, m) = P(yH | A. m).

Combining theorem (16) and corollary (5), we see that for the likelihood of equation (1.1) and OTS er-

ror, if algorithm B is a scrambled version of algorithm A, then the algorithms have the same uniform average

over f of P(c | f, m). This constitutes an NFL theorem relating an algorithm to its scrambled version.

Note that if the sampling distributionπ(x) is uniform, we can relax the definition of scrambling to sim-

ply haveΣd P(h | d, A) =Σd P(h | d, B) and theorem (16) will still hold. (For such a case P(q | dX) will be a

function purely of m'that can be absorbed into the quantity func(m, m') discussed in appendix A.)

20

This “scrambling” tool can also be used to help analyze the case where non-homogenous noise-process-

es are superimposed on single-valued target functions (recall that some of the NFL theorems require homo-

geneity of such noise). For reasons of space though, such an analysis is not presented here.

ii) The equivalence of any learning algorithm with its scrambled version

For reasons of space, I will only consider the case where all targets f are allowed (rather than the case

where are f’s expressible as someφ with noise superimposed are allowed). Since the focus is on how (if at

all) the statistical relationship between d and h embodied in the generalizer correlates with error, we must

allow the training set d to vary. Accordingly, the results are conditioned on training set size m rather than

on the precise training set d at hand.

The following theorem, which holds regardless of the loss function, is proven in appendix C.

Theorem 15 For a vertical likelihood, uniform P(f), and OTS error, all learning algorithms with the same

P(yH | m) have the same P(c | m).

Example 6: This example presents an explicit corroboration of theorem (15) in a special case. Say we have

quadratic loss L(., .). In general, we will only be interested in the case where r > 2. (For binary Y, e.g., Y =

{0, 1}, quadratic loss is the same as zero-one loss, and we’re right back in the setting where the NFL theo-

rems apply.) Rather than consider P(c | m) directly, consider the functional of it, E(C | m). For quadratic

L(., .), E(C | m) = E((yH - yF)2 | m). Expanding, we get

E(C | m) = E((yH)2 | m) + E((yF)2 | m) - 2 E(yH yF | m).

E((yF)2 | m) is some constant, independent of the learning algorithm, determined by the geometry of Y, the

likelihood, etc. E((yH)2 | m) does depend on the learning algorithm, and is determined uniquely by

P(yH | m) (in accord with theorem (15)).

The only term left to consider is the correlation term E(yH yF | m). Write this term as

∫ dyF yF E(yH | yF, m) P(yF | m). Now for the assumptions going into theorem (15), E(yH | yF, m) =

E(yH | m).5 Accordingly, there is no expected correlation between yH and yF: E(yH yF | m) = E(yH | m)×

E(yF | m). This means in turn that our correlation term only depends on the learning algorithm through

E(yH | m), which in turn is uniquely determined by P(yH | m). Therefore the theorem is corroborated;

E(C | m) only depends on the learning algorithm through P(yH | m).6

Now P(c | m) =Σf P(c | f, m) P(f | m). Therefore P(c | m) for a uniform P(f) is proportional to

19

4. NON-HOMOGENOUS LOSS FUNCTIONS

i) Overview

This section considers the case where L(., .) is not homogenous, so that the NFL theorems do not apply,

and therefore we usually can makea priori distinctions between algorithms. This section is not meant to be

an exhaustive analysis of such loss functions, but rather to illustrate some of the properties and issues sur-

rounding such functions.

An example of such an L(., .) is the quadratic loss function, L(a, b) = (a - b)2 for finite Y. For the qua-

dratic loss function (and in general for any convex loss function when Y is finite), everything else being

equal, an algorithm whose guessed Y values lie away from the boundaries of Y is to be preferred over an

algorithm which guesses near the boundaries. In addition, consider using a quadratic loss function with two

learning algorithms, P1(h | d) and P2(h | d). Construct the algorithms to be related in the following manner:

algorithm 2 is a deterministic algorithm that makes the single-valued guess given by the expected yH

guessed by algorithm 1, in response to the training set d and test set question q at hand. (More formally,

P2(h | d) =δ(h - h*), where h*(q, y) =δ(y, E1(yH | q, d)) = δ(y, Σy' [y' ∫ dh' h'(q, y') P1(h' | d))]), where h' is

a dummy h argument and y' a dummy y argument.) It is not hard to show [Wolpert 1994a] that for all d and

q, E2(C | q, d)≤ E1(C | d, q), i.e., the expected cost for algorithm 2 is always less than or equal to that of

algorithm 1, regardless of properties of the target.4 This holds even for OTS error, so long as the loss func-

tion is quadratic.

None of this means that the intuition behind the NFL theorems is faulty for non-homogenous L(., .).

However it does mean that that intuition now results in theorems that are not so sweeping as the NFL theo-

rems. In essence, one must “mod out” the possiblea priori advantages of one algorithm over another that

are due simply to the fact that one or the other of those algorithms tends to produce yH values that are fa-

voreda priori by the L(., .) at hand.

The primary tool for deriving these less-sweeping results is to compare the OTS behavior of a learning

algorithm P(h | d) to that of its “scrambled” or “randomized” version, in which P(yH) is preserved, but the

relationship between the training set d and the hypothesis h is randomly scrambled. Such comparisons show

that all thea priori advantages conferred on a particular learning algorithm by a non-homogenous L(., .) are

due simply to the clumping of P(yH) in regions that, due to L(., .) are “good”. (An example of such a region

is the region equidistant from the borders of Y, for a quadratic L(., .).) In particular, according to these com-

parisons, there is no extra advantage conferred by how the learning algorithm chooses to associate yH’s with

particular training sets d and test set inputs q. I.e., there is no advantage conferred by the d-dependence of

the algorithm.

18

Theorem 13 For OTS error, any training set d, and any single-valued target,φ, if there is no noise in the

generation of the training set, then for the majority and anti-majority strategies A and B,

Σh1,h2
 [E(C | h1, h2, φ, d, B) - E(C | h1, h2, φ, d, A)] ≤ 0,

where the sum is over all h1 and h2 such that both E(CIID | φ, h1) and E(CIID | φ, h2) are less thanε.

Theorem 14 For zero-one OTS error, any training set d and any single-valued target,φ, if there is no noise

in the generation of the training set, then for the majority and anti-majority strategies A and B,

Σh1,h2
 [E(C | h1, h2, φ, d, B) - E(C | h1, h2, φ, d, A)] < 0,

where the sum is over all h1 and h2 such that both E(CIID | φ, h1) and E(CIID | φ, h2) are less than 1.

As usual, since these results hold for any particular training set d, they also hold if one averages over

d’s generated fromφ. In addition, similar results hold if A and B refer to cross-validation and anti-cross-

validation rather than the majority strategy and the anti-majority strategy. (Rather than sum over all h1 and

h2 in a certain class, one sums over all generalizers G1 and G2 that produce h’s that lie in that class.)

The opposite results hold if we instead restrict the hypotheses h1 to h2 to lie far from the targetφ, i.e.,

if we restrict attention to h’s for which E(CIID | φ, h) >ε.3 It is currently unknown what happens if we adopt

other kinds of restrictions on the allowed h’s. In particular, it is not clear what happens if one h must be in

one region and the other h in a different region.

Say we accept it as empirically true that using the majority algorithm does, in the real world, usually

result in lower expected cost than using the anti-majority algorithm, as far as OTS zero-one loss is con-

cerned. Say we accept this as true even in those cases where we use h’s that are similar, and therefore have

similar goodness-of-fits to f. Given theorems (13) and (14), this implies that there must be some rather subtle

relationship between the f’s we encounter in the real world on the one hand, and the pairs of h1 and h2 that

we use the majority algorithm with on the other. In particular, it can’t be that the only restriction on those

pairs of h1 and h2 is that they lie in a sphere of radiusε centered on f. However it might be that certain “rea-

sonable” non-uniform distributions over the set of allowed h’s result in our empirical truth. Alternatively,

there may be other geometrical restrictions (besides a sphere) that allow h1 to be close to h2, but that also

allow our empirical truth. As one example, it is conceivable that our empirical truth is allowed if h1 and h2

don’t fall in a sphere of radiusε centered on f, but rather in a ellipse centered off of f.

17

ii) Implications of theorems (11) and (12)

It is worth spending a moment to carefully delineate what has been shown here. Theorems (11) and (12)

mean that there is no prior P(f) such that, without regard to h1 and h2 (G1 and G2 in the case of theorem

(12)), strategy A is preferable to strategy B, for either of the two sets of strategies considered in those the-

orems. (Note how much stronger this statement is then saying that averaged over all P(f), two strategies are

equal.) At best, strategy A beats strategy B for certain P(f)and certain associated h1 and h2. Exactly which

h1 and h2 result in the superiority of strategy A will change with P(f).

So a technique like cross-validation cannot be justified by making assumptions only concerning P(f),

nor by making assumptions only concerning G1 and G2. Rather one must make assumptions about how G1

and G2 correspond to P(f). It is the interplay between all three quantities that determines how well cross-

validation performs. (See theorem (1) of section (3) of [Wolpert 1994a].)

Since these results hold for all training sets d, they mean in particular that if f is fixed while d is averaged

over, then the two strategies have equal average OTS error. This is important because such a scenario of

having f fixed and averaging over d’s is exactly where you might presume (due to computational learning

theory results) that strategy A beats strategy B.

How can we reconcile the results of this section with those computational learning theory results? Con-

sider the case of theorem (11). My suspicion is what’s happening is the following: There are relatively few

{h1, h2} pairs for which strategy A wins, but for those pairs, it wins by a lot. There are many pairs for which

strategy B wins, but for those pairs, strategy B only wins by a little. In particular, I suspect that those “many

pairs” are the relatively many pairs for which f agrees with h1 almost exactly as often as it agrees with h2.

If this is indeed the case, it means that strategy A is unlikely to be grossly in error. Note that this is a

confidence-interval statement, exactly the kind that the VC theorems apply to. (However it is a confidence-

interval statement concerningoff-training set error; in this it is actually an extension of VC results, which

concern IID error.)

iii) Restricted averages over quantities involving the hypothesis

Since theorem (11) tells us that we must “match” h1 and h2 to f for the majority algorithm (A) to beat

anti-majority, one might expect that if we sum only over those hypotheses h1 and h2 lying close to the target

f, then A beats B. Intuitively, if you have a pretty good idea of what f is, and restrict h’s to be fairly good

approximators of that f, then you might expect majority to beat anti-majority.

Interestingly, the exact opposite is usually true, if one measures how “close” an h is to f as E(CIID | f, h)

= ΣyH,yF,q L(h(q), yF) f(q, yF) π(q). The analysis of this is in appendix B, where in particular the following

results are derived.

16

dation rather than anti-cross-validation. In this sense, cross-validation cannot be justified as a Bayesian pro-

cedure. Without restrictions on the set of generalizers under consideration, one cannot say something like

“cross-validation is more appropriate for choosing among the generalizers than is anti-cross-validation if

one assumes such-and-such a prior”.

All of this holds even if we’re considering more than two h’s at a time (in the case of theorem (11)), or

more than two generalizers at a time (in the case of theorem (12)). In addition, theorem (12) holds if we’re

using any d-determined strategy for choosing between algorithms - nothing in the proof of theorem (12)

used any property of cross-validation other than the fact that it uses only d in deciding between the Gi.

A similar result obtains if we simply average over generalizers G without any concern for strategies.

With some abuse of notation, we can write such an average as proportional to

∫ dG P(c | f, d, G) ∝ ∫ d[P(h | d)] P(c | f, h, [P(h | d)]),

where “d[P(h | d)]” means the average over the rn-dimensional simplex that corresponds to the learning al-

gorithms’ possible generalizations from training set d.

We can expand our integral as

∫ d[P(h | d)] Σh P(h | d) P(c | f, h, d).

By symmetry, this is proportional toΣh P(c | f, h, d). We therefore have the following corollary of lemma (3):

Corollary 4 For OTS error, the uniform average over all generalizers G of P(c | f, d, G) is a fixed function

of c, independent of f and d.

(Of course, this in turn results in an identical result for the distribution P(c | f, m, G).)

This has some rather peculiar implications. It means, for example, that for fixed targets f1 and f2, if f1

results in better generalization with the learning algorithms in some set S, then f2 must result in better gen-

eralization with all algorithms not in S. In particular, if for some favorite learning algorithm(s) a certain

“well-behaved”, “reasonable” f results in better generalization than does a “random” f, then that favorite f

results inworse than random behavior for all remaining algorithms. For example, let f be a straight line, and

S any set of algorithms that generalize well for that target. Then the algorithms not in S haveworse than

random generalization on that f.

15

Now consider the quantityΣh1,h2
 P(c | f, h1, h2, d, i), where the variable i is either A or B, depending on

which strategy we’re using. This quantity tells us whether A or B is preferable, if we uniformly average over

all pairs of h’s one might use with A and/or B. (Non-uniform averages are considered below.) As such, it is

a measure of whether A is preferable to B or vice versa. In appendix A the following result is derived:

Theorem 11 For an OTS homogenous symmetric error,Σh1,h2
 P(c | f, h1, h2, d, A) =

Σh1,h2
 P(c | f, h1, h2, d, B), for all f and d.

So even if the likelihood is not vertical, averaged over all hypotheses h1 and h2, strategy A equals strat-

egy B.

The same reasoning can be used to equate cross-validation with anti-cross-validation. Let G1 and G2 be

two learning algorithms, and let strategies A and B now refer to cross-validation and anti-cross-validation

respectively. Since we are only allowing single-valued h’s, and there are rn such h’s, any generalizer is a

mapping from a training set d to a point on the rn-dimensional unit simplex. Therefore any generalizer is a

point in the∆-fold Cartesian product of such simplices, where∆ is the number of possible training sets. (∆

is set by n, r, and the range of allowed m and m'.) So we can talk about averaging over generalizers.

Consider uniformly averaging P(c | f, G1, G2, d, i) over all G1 and G2. Since the training set d is fixed,

this corresponds to uniformly averaging over all possible hypotheses h1 and h2 constructed from d, and an

independent average over all possibilities of whether it is the hypothesis labelled h1 or the one labelled h2

that corresponds to the generalizer with lower cross-validation error. (That “independent average” is set by

the behavior of the Gi over the proper subsets of d that determine cross-validation error over d.) Consider

just the inner-most of these two sums, i.e., without loss of generality say that it is h1 that corresponds to

strategy A and h2 that corresponds to strategy B. Then by lemma (3), we deduce the following.

Theorem 12 For an OTS homogenous symmetric error, the uniform average over all generalizers G1, G2

of P(c | f, G1, G2, d, cross-validation) equals the uniform average over all G1 and G2 of

P(c | f, G1, G2, d, anti-cross-validation).

So for any f, averaged over all generalizers, cross-validation performs the same as anti-cross-validation.

In this sense, if one does not restrict the set of generalizers under consideration, thenregardless of the target,

cross-validation is no better than anti-cross-validation. The immediate implication is that without such a re-

striction, there is no prior P(f) that justifies (in the manner considered in this section) the use of cross-vali-

14

function L, then there are likely to be differences between the raw averagesΣf E(C | f, m, A) and

Σf E(C | f, m, B) for an associated non-homogenous loss function L'.

3 AVERAGING OVER GENERALIZERS RATHER THAN TARGETS

In all of the discussion up to this point, we have averaged over entities concerning targets (namely f, φ,

or P(φ)) while leaving entities concerning the hypothesis (e.g., the generalizer P(h | d)) fixed. Although the

results of such an analysis are illuminating, it would be nice to have alternative results in which one doesn’t

have to specify a distribution over f/φ/P(φ). Such results would be prior-independent.

One way to do this is to hold one of f/φ/P(φ) fixed (though arbitrary), and average over entities concern-

ing the hypothesis instead. It is not clear if one can formulate this approach in so sweeping a manner as the

NFL theorems, but even its less sweeping formulation results in some interesting conclusions. In that they

are prior-independent “negative” conclusions, these conclusions constitute a first principles proof that, for

example, cross-validation is non-Bayesian. I.e., they constitute a proof that there is no f/φ/P(φ) for which

cross-validation will necessarily work, independent of the learning algorithms it’s choosing among.

i) Averages over entities concerning the hypothesis

Consider the following situation: the target f is fixed, as is the training set d. There are two hypothesis

functions, h1 and h2. For simplicity, I will restrict attention to the (most popular) case where h’s are single-

valued, so expressions like “h(x)” are well-defined. Consider two strategies for choosing one of the hi:

A) Choose whichever of the hi agrees more often with d;

B) Choose whichever of the hi agrees less often with d.

Note that if the two h’s agree with the training set d equally as often, the strategies are equivalent.

To analyze the relative merits of strategies A and B, start with the following lemma, proven in appendix

A.

Lemma 3 For all targets f, for all m' < n, for all training sets d having m' distinct elements, and for all sets

of m' values for the values of the hypothesis on the elements of dX, h(x ∈ dX)

Σh(x∉dX) P(c | f, h, d)

is the same function of the cost c, for an OTS homogenous loss that is a symmetric function of its arguments.

13

too large) set of learning algorithms, one can construct a new one that is head-to-head minimax superior to

the algorithms in that set.

iv) More general issues concerning head-to-head minimax behavior

The discussion above leads to the question of whether one can construct a fixed learning algorithm that

is head-to-head minimax superior to all others. (As a possible alternative, it may be that there are “cycles”,

in which algorithmα is minimax superior toβ, andβ is toχ, but in additionχ is superior toα.) It seems

unlikely that the answer to this question is yes. After all, due to the NFL theorems, the smallest

maxf E(C | f, m) can be for our candidate learning algorithm isΣc c Λ(c) / r. However for all targets f, there

is at least one learning algorithm that has zero error on that f (the algorithm that guesses that f regardless of

the data set). It is hard to reconcile these facts with our hypothesis, especially given that theΣc is usually

quite large (e.g., for zero-one loss, it’s (r - 1) / r).

It may be that if one restricts attention to “reasonable” algorithms (presumably defined to exclude the

always-guess-f-regardless-of-d algorithm, among others), there is such a thing as an algorithm that is head-

to-head minimax superior to all others. This raises the followinginteresting issue: All learning algorithms

that people use are very similar to one another. To givea simple example, almost all such algorithms try to

fit the data, butalso restrict the “complexity” of the hypothesis somehow. So thepicture that emerges is that

people use learning algorithms tightlyclustered in a tiny section of the space of all algorithms. It may bethat

there is an algorithm that is minimax superior to all those inthe tiny cluster, even if there is no such thing

as a universallyhead-to-head minimax superior algorithm. If that is the case, then it would bepossible to

construct an algorithm “superior” to those currentlyknown. But this would only be possible because people

have had such limited imagination inconstructing learning algorithms.

There are a number of other interesting hypotheses related to minimax behavior. For example, it may

be that in many situations not only is cross-validation head-to-head minimax superior to the generalizers it’s

choosing among, but also superior to anti-cross-validation. As another hypothesis, say we have two algo-

rithms A and B where A is head-to-head minimax superior to B. So E(C | f, m, B) “flares out” away from

E(C | f, m, A) for some f. Now change the loss function to be non-homogenous, in such a way that what used

to be extremal values of c become much larger. Given the “flaring out” behavior, this may lead to A’s being

superior to B even in terms ofΣf E(C | f, m) (since at those “flare” f, the difference between E(C | f, m, A)

and E(C | f, m, B) has been increased, and there is little change in the difference for those f for which

E(C | f, m, B) < E(C | f, m, A)).

In fact, for non-homogenous loss functions there are distinctions between algorithms in terms of

Σf E(C | f, m), as is discussed below. The line of reasoning just given builds upon this fact: it suggests that

when there are head-to-head minimax differences between algorithms A and B for some homogenous loss

12

error,β might correctly choose between them, so the expected cost ofβ is significantly better than that ofα

for such situations. In other words, it might commonly be the case that when asked to choose between two

generalizers A and B in a situation where they have comparable expected cost, cross-validation usually fails,

but in those situations where the generalizers have significantly different costs, cross-validation successful-

ly chooses the better of the two.

Similar behavior may hold even when using cross-validation to choose among more than two algo-

rithms. Under such a hypothesis, cross-validation still has the same average OTS behavior as any other al-

gorithm. And there are actually more situations in which it fails than in which it succeeds (!). However under

this hypothesis cross-validation has desirable head-to-head minimax behavior; its behavior will never be

much worse than the best possible.2

So in particular, assume we are in such a scenario, and that whatever f is, the generalizers amongst

which we are choosing all perform well for that f. I.e., we believe our generalizers are well-suited to targets

f, although we perhaps cannot formalize this in terms of priors over f, etc. Then we are assured that cross-

validation will not perform much worse than the best of those generalizers - all of which perform well for

the f at hand - and may perform significantly better. (It should be noted though that even if this hypothesis

holds, there are still a number of caveats concerning the use of cross-validation, caveats that, unlike the NFL

theorems but just like head-to-head minimax behavior, apply regardless of f. See the averaging-over-hy-

potheses section below.)

Note that such desirable head-to-head minimax behavior would be prior-independent; if it holds for all

targets f, then it certainly holds for all P(f). In addition, such behavior would be consistent with the (con-

ventional) view that cross-validation is usually an accurate estimator of generalization performance. It’s im-

portant to note though that one can explicitly construct cases where cross-validation doesn’t have this de-

sirable head-to-head minimax behavior. (See section 8 in [Wolpert 1994a].)

In addition, it’s not at all clear why one should pay attention to distributions conditioned on training set

size m rather than on the actual training set d at hand. Yet it is only distributions conditioned on m rather

than d that can be said to have head-to-head minimax distinctions (of any sort) with regard to targets f. (To

see this, for simplicity consider a deterministic learning algorithm. For such an algorithm, P(c | f, d) =

δ(c, χ(f, d)) for some functionχ(., .). The immediate corollary of theorem (1) is that for such an algorithm,

for any fixed training set d and cost c, the number of targets f resulting in that cost is a constant, independent

of the learning algorithm.)

It should also be noted that in this hypothesis concerning cross-validation’s head-to-head minimax

properties, cross-validation constitutes a different learning algorithm for each new set of generalizers it

chooses among. So even if the hypothesis is true, it would not mean that there is a single learning algorithm

that is head-to-head minimax superior to all others. Rather it would mean that given any (presumably not

11

PCA,CB|Φ,M (1, 0 |φ, m) = 1. Despite the fact that PCA,CB|Φ,M (0, 1 | h1, m) = 1,Σφ PCA,CB|Φ,M (0, 1 |φ, m)

can equal Σφ PCA,CB|Φ,M (1, 0 |φ, m) by having manyφ for which PCA,CB|Φ,M (1, 0 |φ, m) is greater than

0, but none for which it equals 1 exactly.

More generally, consider anyφ other thanφ = h1 orφ = h2. For such aφ, there exists at least one x where

φ(x) ≠ h1(x), and at least one x whereφ(x) ≠ h2(x). Then so long asπ(x) > 0 for all x, for any suchφ there

exists a training set d for which P(d |φ, m) > 0 and such that both h1(.) and h2(.) have disagreements withφ

over the set of elements in X - dX. (Just choose d = {dX, φ(dX)} and choose dX to not include all of the el-

ements x for whichφ(x) ≠ h1(x) and to not include all of the elements x for whichφ(x) ≠ h2(x).)

Therefore for any suchφ, for either the majority or anti-majority algorithm, E(COTS | φ, m) =

Σd E(COTS | φ, d) P(d |φ, m) > 0. Therefore in particular, for any suchφ, the anti-majority algorithm has

E(COTS | φ, m) > 0. Given that it is certainly true that E(COTS | φ, m) > 0 for all otherφ (those that equal

either h1 or h2), this means that for the anti-majority algorithm, for no φ is it true that E(COTS | φ, m) = 0.

Yet on the other hand, we know that for the majority algorithm, there areφ such that E(COTS | φ, m) = 0.

So in this scenario, despite the NFL theorems, there existφ for which we expect CA to be far less than

CB (e.g., forφ = h1 the difference in expected costs is 1), but none for which the reverse is true. So for noφ

will you go far wrong in picking algorithm A, and for someφ youwould go far wrong in picking algorithm

B. In such a case, in this particular sense, one can say that algorithm A is superior to algorithm B, even with-

out making any assumptions concerning targets.

iii) The NFL theorems, cross-validation, and head-to-head minimax behavior

In paper one it is pointed out that for some pairs of algorithms the NFL theorems may be met by having

comparatively many targets in which algorithm A is just slightly worse than algorithm B, and comparatively

few targets in which algorithm A beats algorithm B by a lot. This point is also discussed in example (5) just

above. When we have two algorithms of this sort, we say that A is “head to head” minimax superior to B.1

It is interesting to speculate about the possible implications of head-to-head minimax superiority for

cross-validation. Consider two algorithmsα andβ. α is identical to some algorithm A, andβ works by using

cross-validation to choose between A and some other algorithm B. By the NFL theorems,α andβ must have

the same expected cost, on average. However the following might hold for many choices of A, B, the sam-

pling distributionπ(x), etc.: For most targets (i.e., most f, or mostφ, or most P(φ), depending on which of

NFL theorem’s averages is being examined) A and B have approximately the same expected OTS error, but

β usually chooses the worse of the two, so in such situations the expected cost ofβ is (slightly) worse than

that ofα. In those comparatively few situations where A and B have significantly different expected OTS

10

Theorem 10 For the h* learning algorithm, for all targetsφ such thatφ(x) = 0 for more than m distinct x,

E(COTS | φ, punt, m) ≤ E(COTS | φ, no punt, m).

Taken together, these results severely restrict how well an algorithm can be said to perform without

knowledge of the prior over targets P(f). In particular, they say that any learning algorithm can just as readily

performworse than randomly as better. See paper one for a full discussion of this and other implications of

these results.

ii) An example

Some examples of the NFL theorems are presented in paper one. Another one, particularly relevant for

the discussion in this second paper, is as follows.

Example 5: Return to the scenario of example 1 from paper one: We have no noise (so targets are single-

valued functionsφ), and the zero-one loss L(., .). Fix two possible (single-valued) hypotheses, h1 and h2.

Let learning algorithm A take in the training set d, and guess whichever of h1 and h2 agrees with d more

often (the “majority” algorithm). Let algorithm B guess whichever of h1 and h2 agreesless often with d (the

“anti-majority” algorithm). If h1 and h2 agree equally often with d, both algorithms choose randomly be-

tween them. Then averaged over all target functionsφ, E(C |φ, m) is the same for A and B.

Consider the case whereφ = h1, and for simplicity have h1(x) ≠ h2(x) for all x. Then with some abuse

of notation, we can write P(cA, cB |φ, m) =δ((cA, cB), (0, 1)), or PCA,CB|Φ,M (0, 1 |φ, m) = 1 for short, where

ci refers to the cost associated with algorithm i and “δ(a, b)” is the Kronecker delta function. In other words,

algorithm A, the majority algorithm, will always guess perfectly for this target, whereas algorithm B, the

anti-majority algorithm, will never get a guess correct.

Now L(., .) takes on only two values in this example. So by the argument in section 3(iv) of paper one,

we know thatΣφ P(cA, cB | φ, m) = Σφ P(cB, cA | φ, m). (This is a stronger statement than the generic NFL

theorems, which only say thatΣφ P(CA| φ, m) = Σφ P(CB | φ, m).) So the probability “mass” over allφ for

having (cA, cB) = (α, β) is equal to the mass for having (cA, cB) = (β, α). Stated differently, if

Σφ P(cB, cA |φ, m) is viewed as a function over theR2 space of values of (cA, cB), that function is symmetric

under cA ↔ cB.

This might suggest that all aspects of algorithms A and B are identical, if one considers the space of all

possible f. This is not the case however. In particular, the cA ↔ cB symmetry does not combine with the

fact that there is aφ for which PCA,CB|Φ,M (0, 1 |φ, m) = 1 to imply that there must be aφ for which

9

Theorem 6 For OTS error, a vertical P(d |φ), homogenous loss L, uniform P(φ), and a homogenous test-

set noise process, P(c | d) equalsΛ(c) / r.

Corollary 2 For OTS error, vertical P(d | φ), homogenous loss L, a homogenous test-set noise process, and

uniform P(φ), P(c | m) equalsΛ(c) / r.

Theorem 7 Assume OTS error, a vertical P(d |φ), homogenous loss L, and a homogenous test set noise

process. Letα index the priors P(φ). Then the uniform average over all α of P(c | m,α) equalsΛ(c) / r.

Theorem 8 Assume OTS error, a vertical P(d |φ), homogenous loss L, and a homogenous test set noise

process. Letα index the priors P(φ). Then the uniform average over all α of P(c | d,α) equalsΛ(c) / r.

Corollary 3 Assume OTS error, a vertical P(d |φ), homogenous loss L, and a homogenous test set noise

process. Letα index the priors P(φ), and let G(α) be a distribution overα. Assume G(α) is invariant under

the transformation of the priorsα induced by relabelling the targetsφ. Then the average according to G(α)

of P(c | m,α) equalsΛ(c) / r.

Now define the empirical error

s ≡ Σm
i=1 ΣyH

 L(yH, dY(i)) h(dX(i), yH) π(dX(i)) / Σm
i=1 π(dX(i)) .

As an example, for zero-one loss and single-valued h, s is the average misclassification rate of h over the

training set.

Theorem 9 For homogenous L, OTS error, a vertical likelihood, and uniform P(f), P(c | s, d) =Λ(c) / r.

For the purposes of the next result, restrict things so that both hypotheses h and targets are single-valued

(and therefore targets are written as functionsφ), and there is no noise.Y is binary, and we have zero-one

loss. Let the learning algorithm always guess the all 0’s function, h*. The “punt signal” is given ifdY con-

tains at least one non-zero value. (That signal is supposed to indicate that one is unsure about using the fit

h*.) Otherwise a “no-punt” signal is given. Then for the likelihood of (1.1), uniformπ(x), and n >> m,

8

all f” means∫ df A(f) / ∫ df 1. Note that these integrals are implicitly restricted to those f that constitute X-

conditioned distributions over Y, i.e., to the appropriate product space of unit-simplices. (The details of this

restricting will not matter, because integrals will almost never need to be evaluated. But formally, integrals

over f are over a full rn-dimensional Euclidean space, with a series of Dirac delta functions and Heaviside

functions enforcing the restriction to the Cartesian product of simplices.) Similar meanings for “uniformly

averaged” are assumed if we’re talking about averaging over other quantities, likeφ or P(φ).

i) The NFL theorems

In [Wolpert 1992] it is shown that P(c | d) =∫ df dh P(h | d) P(f | d) Mc,d(f, h), where so long as the loss

function is symmetric in its arguments, Mc,d(., .) is symmetric in its arguments. (See point (11) of the pre-

vious section.) In other words, for the most common kinds of loss functions (zero-one, quadratic, etc.), the

probability of a particular cost is determined by an inner product between your learning algorithm and the

posterior probability. (f and h being the component labels of the d-indexed infinite-dimensional vectors

P(f | d) and P(h | d), respectively.) Metaphorically speaking, how “aligned” you (the learning algorithm) are

with the universe (the posterior) determines how well you will generalize.

The question arises though of how much can be said concerning a particular learning algorithm’s gen-

eralization behavior without specifying the posterior (which usually means without specifying the prior). In

paper one the following “no-free-lunch” (NFL) theorems are derived to partly address this issue. These the-

orems are valid for any learning algorithm.

Theorem 1 For homogenous loss L, the uniform average over all f of P(c | f, d) equalsΛ(c) / r.

Theorem 2 For OTS error, a vertical P(d | f), and a homogenous loss L, the uniform average over all targets

f of P(c | f, m) =Λ(c) / r.

Theorem 3 For OTS error, a vertical P(d | f), uniform P(f), and a homogenous loss L, P(c | d) =Λ(c) / r.

Corollary 1. For OTS error, a vertical P(d | f), uniform P(f), and a homogenous loss L, P(c | m) = Λ(c) / r.

Theorem 4 For homogenous loss L and a homogenous test-set noise process, the uniform average over all

single-valued target functionsφ of P(c |φ, d) equalsΛ(c) / r.

Theorem 5 For OTS error, a vertical P(d |φ), homogenous loss L, and a homogenous test-set noise process,

the uniform average over all target functionsφ of P(c |φ, m) equalsΛ(c) / r.

7

2. THE NO-FREE-LUNCH THEOREMS AND ‘HEAD TO HEAD’ MINIMAX DISTINCTIONS

The goal is to address the issue of how F1, the set of targets f for which algorithm A outperforms algo-

rithm B, compares to F2, the set of f for which the reverse is true. To analyze this issue, the simple trick is

used of comparing the average over f of f-conditioned probability distributions for algorithm A to the same

average for algorithm B. The relationship between those averages is then used to compare F1 to F2.

Here and throughout this paper, when discussing non-single-valued f’s, “A(f) uniformly averaged over

The setsX andY, of sizes n and r: The input and output space, respectively.

The set d, of mX-Y pairs: The training set.
TheX-conditioned distribution overY, f: The target, used to generate test sets.
TheX-conditioned distribution overY, h: The hypothesis, used to guess for test sets.
The real number c: The cost.

TheX-value q: The test set point.
TheY-value yF: The sample of the target f at point q.
TheY-value yH: The sample of the hypothesis h at point q.

P(h | d): The learning algorithm.
P(f | d): The posterior.
P(d | f): The likelihood.
P(f): The prior.

If c = L(yF, yH), L(., .) is the “loss function”.

L is “homogenous” if ΣyF
δ(c, L(yH, yF)) is independent of yF.

If we restrict attention to f’s given by a fixed noise process superimposed on an underlying
single-valued funtion fromX to Y, φ, and ifΣφ P(yF | q,φ) is independent of yF, we have
“homogenous” noise.

Table 1: Summary of the terms in the EBF.

6

11) The learning algorithm only sees the training set d, and in particular does not directly see the target. So

P(h | f, d) = P(h | d), which means that P(h, f | d) = P(h | d)× P(f | d), and therefore P(f | h, d) =

P(h, f | d) / P(h | d) = P(f | d).

iv) The cost and “generalization error”

12) For the purposes of this paper, the cost c is associated with a particular yH and yF, and is given by a

loss function L(yH, yF). As an example, in regression, often we have “quadratic loss”: L(yH, yF) =

(yH - yF)2.

L(., .) is “homogenous” if the sum over yF of δ(c, L(yH, yF)) is some functionΛ(c), independent of

yH (δ here being the Kronecker delta function). As an example, the “zero-one” loss traditional in computa-

tional learning theory (L(a, b) = 1 if a≠ b, 0 otherwise) is homogenous.

13) In the case of “IID error” (the conventional error measure), P(q | d) =π(q) (so test set inputs are chosen

according to the same distribution that determines training set inputs). In the case of OTS error, P(q | d) =

[δ(q ∉ dX) π(q)] / [Σq δ(q ∉ dX) π(q)], whereδ(z) ≡ 1 if z is true, 0 otherwise.

SubscriptsOTS or IID on c correspond to using those respective kinds of error.

14) The “generalization error function” used in much of supervised learning is given by c'≡ E(C | f, h, d).

(SubscriptsOTS or IID on c' correspond to using those respective ways to generate q.) It is the average over

all q of the cost c, for a given target f, hypothesis h, and training set d.

In general, probability distributions over c' do not by themselves determine those over c nor vice-versa,

i.e., there is not an injection between such distributions. However the results in this paper in general hold

for both c and c', although they will only be presented for c. In addition, especially when relating results in

this paper to theorems in the literature, sometimes results for c' will implicitly be meant even when the text

still refers to c. (The context will make this clear.)

15) When the size ofX, n, is much greater than the size of the training set, m, probability distributions over

c'IID and distributions over c'OTS become identical. (Although as mentioned in the previous section, distri-

butions conditioned on c'IID can be drastically different from those conditioned on c'OTS.) This is estab-

lished formally in appendix B.

5

(1.1) P(d | f)= Πm
i=1 π(dX(i)) f(dX(i), dY(i))

(where π(x) is the “sampling distribution”). In other words, under this likelihood d is created by repeatedly

and independently choosing an input value dX(i) by samplingπ(x), and then choosing an associated output

value by sampling f(dX(i), .), the same distribution used to generate test set outputs. This likelihood is ver-

tical.

As another example, if there is noise in generating training setX values but none for test setX values,

then we usually do not have a vertical P(d | f). (This is because, formally speaking, f directly governs the

generation of test sets, not training sets; see appendix A.)

7) The “posterior” usually means P(f | d), and the “prior” usually means P(f).

8) It will be convenient at times to restrict attention to f’s that are constructed by adding noise to a single-

valued function fromX to Y, φ. For a fixed noise process, such f’s are indexed by the underlyingφ.

The noise process is “homogenous” ifthe sum over allφ of P(yF | q,φ) is independent of yF. An example

of a homogenous noise process is classification noise that with probability p replacesφ(q) with some other

value inY, where that “other value inY” is chosen uniformly and randomly.

iii) The learning algorithm

9) Hypotheses h are always assumed to be of the form ofX-conditioned distributions overY, indicated by

the real-valued function h(x∈X, y ∈ Y) (i.e., P(yH | h, q) = h(q, yH)). Equivalently, where Sr is defined as

the r-dimensional unit simplex, hypotheses can be viewed as mappings h:X → Sr .

Any restrictions on h are imposed by P(f, h, d, c). Here and throughout, a “single-valued” distribution

is one that, for a given x, is a delta function about some y. Such a distribution is a single-valued function

from X to Y. As an example, if one is using a neural net to as one’s regression through the training set, usu-

ally the (neural net) h is single-valued. On the other hand, when one is performing probabilistic classifica-

tion (as in softmax), h isn’t single-valued.

10) Any (!) learning algorithm (aka “generalizer”) is given by P(h | d), although writing down a learning

algorithm’s P(h | d) explicitly is often quite difficult. A learning algorithm is “deterministic” if the same d

always gives the same h. Backprop with a random initial weight is not deterministic. Nearest neighbor is.

Note that since d is ordered, “on-line” learning algorithms are subsumed as a special case.

4

indicated using lower case letters. Note though that some quantities (e.g., the spaceX) are neither random

variables nor instantiations of random variables, and therefore their written case carries no significance.

Only rarely will it be necessary to refer to a random variable rather than an instantiation of it. In accord

with standard statistics notation, “E(A | b)” will be used to mean the expectation value of A given B = b,

i.e., to mean ∫ da a P(a | b). (Sums replace integrals if appropriate.)

3) The primary random variables are the hypothesisX-Y relationship output by the learning algorithm (in-

dicated by H), the target (i.e., “true”)X-Y relationship (F), the training set (D), and the real world cost (C).

These variables are related to one another through other random variables representing the (test set) in-

put space value (Q), and the associated target and hypothesisY-values, YF and YH respectively (with in-

stantiations yF and yH respectively).

This completes the list of random variables.

As an example of the relationship between these random variables and supervised learning, f, a partic-

ular instantiation of a target, could refer to a “teacher” neural net together with superimposed noise. This

noise-corrupted neural net generates the training set d. The hypothesis h on the other hand could be the neu-

ral net made by one’s “student” algorithm after training on d. Then q would be an input element of the test

set, yF and yH associated samples of the outputs of the two neural nets for that element (the sampling of yF

including the effects of the superimposed noise), and c the resultant “cost” (e.g., c could be (yF - yH)2).

ii) Training sets and targets

4) m is the number of elements in the (ordered) training set d. {dX(i), dY(i)} is the set of m input and output

values in d. m' is the number of distinct values in dX.

5) Targets f are always assumed to be of the form ofX-conditioned distributions overY, indicated by

the real-valued function f(x∈X, y ∈ Y) (i.e., P(yF | f, q) = f(q, yF)). Equivalently, where Sr is defined as the

r-dimensional unit simplex, targets can be viewed as mappings f:X → Sr .

Any restrictions on f are imposed by P(f, h, d, c), and in particular by its marginalization, P(f). Note that

any output noise process is automatically reflected in P(yF | f, q). Note also that the equality P(yF | f, q) =

f(q, yF) only directly refers to the generation of test set elements; in general, training set elements can be

generated from targets in a different manner.

6) The “likelihood” is P(d | f). It says how d was generated from f. It is “vertical” if P(d | f) is independent

of the values f(x, yF) for those x∉ dX. As an example, the conventional IID likelihood is

3

tion cannot be justified as a Bayesian procedure. I.e., there is no prior for which,without regard for the

learning algorithms in question, one can conclude that one should choose between those algorithms based

on minimal rather than (for example) maximal cross-validation error. In addition, it is noted that for a very

natural restriction of the class of learning algorithms, one can distinguish between using minimal rather than

maximal cross-validation error - and the result is that one should use maximal error (!).

All of the analysis up to this point assumes the loss function is in the same class as the zero-one loss

function (which is assumed in most of computational learning theory). Section 4 discusses other loss func-

tions. In particular, the quadratic loss function modifies the preceding results considerably; for that loss

function, there are algorithms that area priori superior to other algorithms under averaging over targets.

However it is shown here that no algorithm is superior to its “randomized” version, and in this sense one

cannota priori justify any particular learning algorithm, even for a quadratic loss function.

Finally, section 5 presents some open issues and future work.

1. THE EXTENDED BAYESIAN FORMALISM

These papers use the Extended Bayesian Formalism [Wolpert 1994a, Wolpert et al. 1995,Wolpert

1992]. In the current context, the EBF is just conventional probability theory, applied to the case where one

has a different random variable for the hypothesis output by the learning algorithm and for the target rela-

tionship. It is this crucial distinction that separates the EBF from conventional Bayesian analysis, and that

allows the EBF (unlike conventional Bayesian analysis) to subsume all other major mathematical treatments

of supervised learning like computational learning theory, sampling theory statistics, etc. (See [Wolpert

1994a].)

This section presents a synopsis of the EBF. Points (2), (8), (14) and (15) below can be skipped ina first

reading. A quick reference of this section’s synopsis can be found in Table 1.

Readers unsure of any aspects of this synopsis, and in particular unsure of any of the formal basis of the

EBF or justifications for any of its assumptions, are directed to the detailed exposition of the EBF in appen-

dix A of the first paper.

i) Overview

1) The input and output spaces areX andY, respectively. They contain n and r elements respectively. A

generic element ofX is indicated by ‘x’, and a generic element ofY is indicated by ‘y’.

2) Random variables are indicated using capital letters. Associated instantiations of a random variable are

2

INTRODUCTION

Can one get something for nothing in supervised learning? Can one get useful, caveat-free theoretical

results that link the training set and the learning algorithm to generalization error, without making assump-

tions concerning the target? More generally, are there useful practical techniques that require no such as-

sumptions? As a potential example of such a technique, note that people usually use cross-validation with-

out making any assumptions about the underlying target, as though the technique were universally applica-

ble.

This is the second of two papers that present an initial investigation of this issue. These papers can be

viewed as an analysis of the mathematical “skeleton” of supervised learning, before the “flesh” of particular

priors over targets are introduced. It should be emphasized that the work in these papers is very preliminary;

much remains to be done.

The primary mathematical tool used in these papers is off-training set (OTS) generalization error, i.e.,

generalization error for test sets that contain no overlap with the training set. (In the conventional measure

of generalization error such overlap is allowed.) Section 1 of the first paper explains why that is an appro-

priate tool to use. Paper one then uses that tool to elaborate (some of) the senses in which all learning algo-

rithms area priori equivalent to one another. This is done by comparing algorithms via averages over targets

for “homogenous” loss functions and “vertical” likelihoods.

This second paper extends the analysis to other ways of comparing learning algorithms. In particular, it

considers averages over other quantities besides targets, and non-homogenous loss functions. This reveals

more senses in which all algorithms are identical. But it also reveals some important senses in which there

are “assumption-free”a priori distinctions between learning algorithms.

Section 1 of this second paper reviews the mathematical formalism used in these papers.

Section 2 reviews the “no free lunch” (NFL) theorems presented in paper one. It is then pointed out that

the equivalence of expected errors between learning algorithms stipulated by those theorems does not mean

algorithms have equivalent “head to head” minimax properties. Indeed, it may be that (for example) cross-

validation is head-to-head minimax superior to anti-cross-validation (the rule saying choose between gen-

eralizers based on which has theworst cross-validation error). If so, then in that particular sense cross-val-

idation could bea priori justified as an alternative to anti-cross-validation.

Of course, the analysis up to this point in these papers does not rule out the possibility that there are

targets for which one particular learning strategy works well compared to another one. To address (the non-

trivial aspects of) this issue, section 3 of this second paper discusses the case where one averages over hy-

potheses rather than targets. The results of such analyses hold for all possible priors over targets, since they

hold for all (fixed) targets. This allows them to be used to prove, as a particular example, that cross-valida-

THE EXISTENCE OF A PRIORI DISTINCTIONS BETWEEN LEARNING

ALGORITHMS

by

David H. Wolpert

The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA (dhw@santafe.edu)

Abstract: This is the second of two papers that use off-training set (OTS) error to investigate the

assumption-free relationship between learning algorithms. The first paper discusses a particular set

of ways to compare learning algorithms, according to which there are no distinctions between

learning algorithms. This second paper concentrates on different ways of comparing learning algo-

rithms from those used in the first paper. In particular this second paper discusses the associateda

priori distinctions that do exist between learning algorithms. In this second paper it is shown,

loosely speaking, that for loss functions other than zero-one (e.g., quadratic loss), there area priori

distinctions between algorithms. However even for such loss functions, it is shown here that any

algorithm is equivalent on average to its “randomized” version, and in this still has no first princi-

ples justification in terms of average error. Nonetheless, as this paper discusses, it may be that (for

example) cross-validation has better head-to-head minimax properties than anti-cross-validation

(choose the learning algorithm with the largest cross-validation error). This may be true even for

zero-one loss, a loss function for which the notion of “randomization” would not be relevant. This

paper also analyzes averages over hypotheses rather than targets. Such analyses hold for all possi-

ble priors over targets. Accordingly they prove, as a particular example, that cross-validation can-

not be justified as a Bayesian procedure. In fact, for a very natural restriction of the class of learning

algorithms, one should use anti-cross-validation rather than cross-validation (!).

In memory of Tal Grossman.

